如图,四边形是的内接矩形,如果的高线长,底边长,设,,(1)求关于的函数关系式;(2)当为何值时, 四边形的面积最大?最大面积是多少?
如图,一次函数y1=2x+1的图像与反比例函数y2=(k为常数,且)的图像都经过点A(m,3)(1)求点A的坐标及反比例函数的表达式(2)结合图像直接比较:当x>0时,y1和y2的大小.
便民”水泥代销点销售某种水泥,每吨进价为250元,如果每吨销售价定为290元时,平均每天可售出16吨。(1)若代销点采取降低促销的方式,试建立每吨的销售利润y(元)与每吨降低x(元)之间的函数关系式。(2)若每吨售价每降低5元,则平均每天能多售出4吨,问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元。
如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2-3x+2=0的解的概率.
(1)解方程:(x-3)2-2x(x-3)=0(2)用配方法确定二次函数y=-x2+5x+3的图像的开口方向、对称轴和顶点坐标.
已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)结论:BE=DE.