(本小题满分14分) 已知函数(Ⅰ)若a=2,求曲线y=f(x)在点x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设,若对任意,总存在,使得,求a的取值范围.
选修4—4:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程是.(1)写出直线的极坐标方程与曲线的普通方程;(2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.
选修4-1:几何证明选讲如图所示,已知为圆的直径,,是圆上的两个点,于,交于,交于,.(1)求证:是劣弧的中点;(2)求证:.
设函数 (Ⅰ)若,是否存在k和m,使得 ,,若存在,求出k和m的值,若不存在,说明理由(Ⅱ)设 有两个零点 ,且 成等差数列, 是 G (x)的导函数,求证:
已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,.(1)求抛物线的方程;(2)设点,()是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.
如图,在边长为的菱形中,,点,分别是边,的中点,,沿将△翻折到△,连接,得到如图的五棱锥,且.(1)求证:平面;(2)求二面角的正切值.