为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°.根据上面提供的信息,回答下列问题:(1)m= ;抽取部分学生体育成绩的中位数为 分;(2)已知该校九年级共有500名学生,如果体育成绩达33分以上(含33分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.
(本题满分12分, 第(1)小题6分,第(2)小题6分)如图,在平面直角坐标系内,已知直线与x轴、y轴分别相交于点A和点C,抛物线图像过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.
(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC,(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.
如图,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)
如图,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设=,=,试用、分别表示向量和.
(本题满分10分, 第(1)小题6分,第(2)小题4分)已知二次函数的图像经过点A(0,4)和B(1,-2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式; (2)写出该抛物线顶点C的坐标,并求出△CAO的面积.