(本题共有2小题,每小题4分,共8分)(1)解方程:(2)求不等式组的解集.
小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强 7 : 30 从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速,当天早上,小刚 7 : 39 从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行使路程 y (千米)与校车行驶时间 x (分钟)之间的函数图象如图所示.
(1)求点 A 的纵坐标 m 的值;
(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.
如图所示,飞机在一定高度上沿水平直线飞行,先在点 A 处测得正前方小岛 C 的俯角为 30 ° ,面向小岛方向继续飞行 10 km 到达 B 处,发现小岛在其正后方,此时测得小岛的俯角为 45 ° ,如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
先化简,再求值: x x - 1 + x + 1 x 2 - 1 ,其中 x = 2 .
计算: | - 3 | + ( - 1 ) 4 - 2 tan 45 ° - ( π - 1 ) 0 .
如图,二次函数 y = x 2 + bx + c 的图象与 x 轴交于 A 、 B 两点,与 y 轴交于点 C , OB = OC .点 D 在函数图象上, CD / / x 轴,且 CD = 2 ,直线 l 是抛物线的对称轴, E 是抛物线的顶点.
(1)求 b 、 c 的值;
(2)如图①,连接 BE ,线段 OC 上的点 F 关于直线 l 的对称点 F ' 恰好在线段 BE 上,求点 F 的坐标;
(3)如图②,动点 P 在线段 OB 上,过点 P 作 x 轴的垂线分别与 BC 交于点 M ,与抛物线交于点 N .试问:抛物线上是否存在点 Q ,使得 ΔPQN 与 ΔAPM 的面积相等,且线段 NQ 的长度最小?如果存在,求出点 Q 的坐标;如果不存在,说明理由.