已知椭圆:经过点,且与右焦点关于点对称.(Ⅰ)求椭圆的方程;(Ⅱ)是椭圆与轴正半轴的交点, 椭圆上是否存在两点、,使得,?若存在,请说明有几个;若不存在,请说明理由.
(本小题满分12分) 如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,平面CDE (I)求证:平面ADE; (II)在线段BE上存在点M,使得直线M与平面EAD所成角的正弦值为,试确定点M的位置。
.(本小题满分12分) 已知在中,a,b,c分别是角A,B,C所对的边,且满足 (I)求角A的大小; (II)若,求b,c的长。
(本小题满分12分) 已知数列满足 (I)求的取值范围; (II)是否存在,使得?证明你的结论。
(本小题满分12分) 如图,双曲线与抛物线相交于,直线AC、BD的交点为P(0,p)。 (I)试用m表示 (II)当m变化时,求p的取值范围。
(本小题满分12分) 已知函数 (I)当a=1时,求的最小值; (II)求证:在区间(0,1)单调递减。