(本小题满分12分)已知椭圆,点在椭圆上,且构成等差数列,右焦点到直线的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆右焦点斜率为的直线与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线于点M,N,线段MN的中点为P,记直线的斜率为,求证:为定值.
已知函数(1)求的值域;(2)设,函数.若对任意,总存在,使,求实数的取值范围.
设函数在处取得极值,且曲线在点处的切线垂直于直线.(1)求的值;(2)若函数,讨论的单调性.
设函数是定义在R上的奇函数,对任意实数有成立.(1)证明是周期函数,并指出其周期;(2)若,求的值;(3)若,且是偶函数,求实数的值.
已知函数 .(1)若.(2)若函数在上是增函数,求的取值范围.
二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.⑴求f (x)的解析式;⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.