(本小题满分16分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点.(Ⅰ)求椭圆的标准方程; (Ⅱ)过点作垂直于轴的直线,设直线与定直线交于点,试探索当变化时,直线是否过定点?
已知函数. (1)若,求函数在上的单调增区间; (2)若函数在区间上是单调递减函数,求实数的取值范围.
已知,,复数的虚部减去它的实部所得的差为,求实数.
已知数列1,11,111,1111,,,,写出该数列的一个通项公式,并用反证法证明该数列中每一项都不是完全平方数.
已知函数,数列满足,. (1)求; (2)猜想数列的通项,并予以证明.
某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为,且知当利率为0.012时,存款量为1.44亿;又贷款的利率为时,银行吸收的存款能全部放贷出去;若设存款的利率为,,则当为多少时,银行可获得最大收益?