(本小题满分12分)如图,曲线是以原点为中心,轴上的点为焦点的椭圆,曲线是以原点为顶点,为焦点的抛物线的一部分(),是曲线和的交点,已知为钝角且(Ⅰ)分别求曲线和曲线的方程;(Ⅱ)过点作倾斜角互补的两条直线,分别交曲线于,求面积的最大值.
在中,角的对边分别为,且. (1)求角的大小; (2)若,求的面积.
已知命题:方程有两个不等的负实根;命题:方程无实根, 若“或”为真,而“且”为假,求实数的取值范围.
已知抛物线的顶点在原点,对称轴是轴,抛物线上的点到焦点的距离等于5,求抛物线的方程和的值.
F1,F2为双曲线的焦点,过作垂直于轴的直线交双曲线与点P且∠P F1F2=300,求双曲线的渐近线方程。
椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为,求此椭圆的标准方程。