如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的关系,并说明理由.
如图,是一座抛物线形拱桥,水位在AB位置时,水面宽4米,水位上升3米达到警戒线MN位置时,水面宽4米,某年发洪水,水位以每小时0.25米的速度上升,求水过警戒线后几小时淹到拱桥顶?
已知抛物线y=mx2+n向下平移2个单位后得到的函数图像是y=3x2-1,求m、n的值.
一台机器原价60万元,如果每年的折旧率是x,两年后这台机器的价位约为y万元,求y与x的函数关系式.
求符合下列条件的抛物线y=ax2-1的函数关系式: (1)通过点(-3,2); (2)与y=x2的开口大小相同,方向相反; (3)当x的值由0增加到2时,函数值减少4.
已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连结MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO. (1)直接写出点D的坐标; (2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连结OP. ①若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标; ②试问在抛物线的对称轴上是否存在一点T,使得的值最大.若存在,求出T点坐标;若不存在,请说明理由.