某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)有4张桌子,用第一种摆设方式,可以坐___________人;当有张桌子时,用第二种摆设方式可以坐___________人(用含有n的代数式表示).(2)一天中午,餐厅要接待85位顾客共同就餐,但餐厅中只有20张这样的长方形桌子可用,且每4张拼成一张大桌子,若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本校学生对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).
态度
频数(人数)
频率
非常喜欢
5
0.05
喜欢
0.35
一般
50
n
不喜欢
10
合计
m
l
(1)在上面的统计表中 m = , n = .
(2)请你将条形统计图补充完整;
(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?
如图,在 ▱ ABCD 中, DE = CE ,连接 AE 并延长交 BC 的延长线于点 F .
(1)求证: ΔADE ≅ ΔFCE ;
(2)若 AB = 2 BC , ∠ F = 36 ° .求 ∠ B 的度数.
从 − 2 ,1,3这三个数中任取两个不同的数,作为点的坐标.
(1)写出该点所有可能的坐标;
(2)求该点在第一象限的概率.
“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?
如图所示,顶点为 ( 1 2 , − 9 4 ) 的抛物线 y = a x 2 + bx + c 过点 M ( 2 , 0 ) .
(1)求抛物线的解析式;
(2)点 A 是抛物线与 x 轴的交点(不与点 M 重合),点 B 是抛物线与 y 轴的交点,点 C 是直线 y = x + 1 上一点(处于 x 轴下方),点 D 是反比例函数 y = k x ( k > 0 ) 图象上一点,若以点 A , B , C , D 为顶点的四边形是菱形,求 k 的值.