(本小题满分11分)如图1,在△ABC中,∠ACB=90°,AC=BC=,以点B为圆心,以1为半径作圆. 设点P为⊙B上一点,线段CP绕着点C顺时针旋转90°,得到线段CD,连接DA,PD,PB,(1)求证:AD=BP;(2)若DP与⊙B相切,则∠CPB的度数为_________°;(3)如图2,当B,P,D三点在同一直线上时,求BD的长;(4)BD的最小值为________,此时tan∠CBP=_________;BD的最大值为 ,此时tan∠CPB=_________.
如图,抛物线与轴相交于,两点(点在点的左侧),与轴相交于点.为抛物线上一点,横坐标为,且.
(1)求此抛物线的解析式;
(2)当点位于轴下方时,求面积的最大值;
(3)设此抛物线在点与点之间部分(含点和点最高点与最低点的纵坐标之差为.
①求关于的函数解析式,并写出自变量的取值范围;
②当时,直接写出的面积.
如图,在矩形中,,,为边上一点,,连接.动点、从点同时出发,点以的速度沿向终点运动;点以的速度沿折线向终点运动.设点运动的时间为,在运动过程中,点,点经过的路线与线段围成的图形面积为.
(1) , ;
(2)求关于的函数解析式,并写出自变量的取值范围;
(3)当时,直接写出的值.
性质探究
如图①,在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图②,在四边形中,.
①求证:;
②在边,上分别取中点,,连接.若,,直接写出线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 (用含的式子表示).
甲、乙两车分别从,两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到地,乙车立即以原速原路返回到地.甲、乙两车距地的路程与各自行驶的时间之间的关系如图所示.
(2)求乙车距地的路程关于的函数解析式,并写出自变量的取值范围;
(3)当甲车到达地时,求乙车距地的路程.
某地区有城区居民和农村居民共80万人.某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”.
(1)该机构设计了以下三种调查方案:
方案一:随机抽取部分城区居民进行调查;
方案二:随机抽取部分农村居民进行调查;
方案三:随机抽取部分城区居民和部分农村居民进行调查.
其中最具有代表性的一个方案是 ;
(2)该机构采用了最具有代表性的调查方案进行调查.供选择的选项有:电脑、手机、电视、广播、其他,共五个选项.每位被调查居民只选择一个选项.现根据调查结果绘制如下统计图,请根据统计图回答下列问题:
①这次接受调查的居民人数为 人;
②统计图中人数最多的选项为 ;
③请你估计该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数.