(本小题满分13分)已知椭圆C:(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为b.(Ⅰ)求椭圆C的离心率;(Ⅱ)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.
(13分)已知集合,. (1)若,求 ; (2)若,求实数的取值范围.
(本小题满分16分)设函数(其中常数>0,且≠1).(Ⅰ)当时,解关于的方程(其中常数);(Ⅱ)若函数在上的最小值是一个与无关的常数,求实数的取值范围.
(本小题满分16分)已知数列中,,点在直线上.(Ⅰ)计算的值;(Ⅱ)令,求证:数列是等比数列;(Ⅲ)设分别为数列的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出的值;若不存在,请说明理由.
(本小题满分16分)经市场调查,某超市的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间(天)的函数,且日销售量近似满足(件),价格近似满足(元).(Ⅰ)试写出该种商品的日销售额与时间的函数表达式;(Ⅱ)求该种商品的日销售额的最大值与最小值.
(本小题满分14分)设的三个内角所对的边分别为,且满足.(Ⅰ)求角的大小;(Ⅱ)若,试求的最小值.