(本小题满分14分)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD = AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,,.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元. 试问当为多少时,年总收入最大?
已知函数. (1)求的定义域及最小正周期;(2)求单调递减区间.
若点M是ABC所在平面内一点,且满足:.(1)求ABM与ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设,求的值.
已知,且.(1)求的值.(2)若,,求的值
已知函数.(1)求的最小正周期.(2)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的值域.
在已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(,-2).(1)求f(x)的解析式;(2)当x∈[,]时,求f(x)的值域.