(本小题满分14分)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD = AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,,.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元. 试问当为多少时,年总收入最大?
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AB,. (1)求证:证明:BD⊥平面PAC; (2)求PC与平面PAB所成角的正切值.
已知等差数列的前n项和为,,和的等差中项为9. (1)求及; (2)令,求数列的前n项和.
已知a,b,c分别为△ABC三个内角A,B,C的对边,a=bsinA-acosB. (1)求B; (2)若b=2,△ABC的面积为,求a,c.
已知椭圆:的一个顶点为,离心率为.直线与椭圆交于不同的两点M,N. (Ⅰ)求椭圆的方程; (Ⅱ)当△AMN得面积为时,求的值.
等比数列的各项均为正数,且 (1)求数列的通项公式; (2)设求数列的前n项和.