(本小题满分14分)如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,M为AB中点,D为PB中点, 且△PMB为正三角形.(1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D—BCM的体积.
某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似地表示为,已知此生产线年产量最大为210吨。 (1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求每吨产品平均最低成本; (2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若. (Ⅰ)求证:平面; (Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点的位置并证明,若不存在,请说明理由; (Ⅲ)求二面角的余弦值.
高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组如图是按上述分组方法得到的频率分布直方图. (1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数。 (2)设表示该班两个学生的百米测试成绩,已知求事件“”的概率。
已知以角为钝角的的内角A、B、C的对边分别为a、b、c,,且 (1)求角的大小; (2)求的取值范围.
(本题14分)已知定义域为R的函数是奇函数。(1)求a的值;(2)用定义判断该函数的单调性(3)若对任意的,不等式恒成立,求k的取值范围;