(本小题满分14分)如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,M为AB中点,D为PB中点, 且△PMB为正三角形.(1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D—BCM的体积.
设关于的一元二次方程.(1)若,都是从集合中任取的数字,求方程有实根的概率;(2)若是从区间[0,4]中任取的数字,是从区间[1,4]中任取的数字,求方程有实根的概率.
已知数列的前n项和.(1)求数列的通项公式;(2)若数列是等比数列,公比为,且满足,求数列的前n项和.
(本题满分10分)选修4 - 5 :不等式选讲设函数,.(I)求证;(II)若成立,求x的取值范围.
(本题满分10分)选修4 -4 :坐标系与参数方程将圆上各点的纵坐标压缩至原来的,所得曲线记作C;将直线3x-2y-8=0绕原点逆时针旋转90°所得直线记作l.(I)求直线l与曲线C的方程;(II)求C上的点到直线l的最大距离.
(本小题满分10分)选修4-1:几何证明选讲如图,AB是的直径,AC是弦,直线CE和切于点C, AD丄CE,垂足为D.(I) 求证:AC平分;(II) 若AB=4AD,求的大小.