(本小题满分10分) 选修4—5:不等式选讲已知关于的不等式,其解集为.(Ⅰ)求的值;(Ⅱ)若,均为正实数,且满足,求的最小值.
C.(选修4—4:坐标系与参数方程)在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被截得的弦的长度.
B.(选修4—2:矩阵与变换)已知矩阵,若矩阵对应的变换把直线:变为直线,求直线的方程.
A.(选修4—1:几何证明选讲)如图,的半径垂直于直径,为上一点,的延长线交于点,过 点的圆的切线交的延长线于.求证:.
(本小题满分16分) [已知数列满足,.(1)求数列的通项公式;(2)若对每一个正整数,若将按从小到大的顺序排列后,此三项均能构成等差数列, 且公差为.①求的值及对应的数列.②记为数列的前项和,问是否存在,使得对任意正整数恒成立?若存在,求出的最大值;若不存在,请说明理由.
(本小题满分16分)对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(1)判断函数是否为“()型函数”,并说明理由;(2)已知函数是“(1,4)型函数”, 当时,都有成立,且当时,,若,试求的取值范围.