(本小题满分14分)如图,多面体ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的边长为2,直角梯形ABCD中,AB∥CD,AD⊥DC,AB=2,CD=4. (Ⅰ)求证:BC⊥平面BDE;(Ⅱ)试在平面CDE上确定点P,使点P到直线DC、DE的距离相等,且AP与平面BEF所成的角等于30°.
把下列方程化为直角坐标方程(并说明对应的曲线):① ②
在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 .(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;(Ⅲ)请问是否存在直线 ,∥l且与曲线C的交点A、B满足;若存在请求出满足题意的所有直线方程,若不存在请说明理由。
在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。
)袋中装有大小相同的黑球、白球和红球共10个。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是(1)求袋中各色球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的分布列及数学期望Eξ和方差Dξ;
为了防止受污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值E(X).