.已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆C的方程; (Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点, ①若直线AB的斜率为,求四边形APBQ面积的最大值; ②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
命题:已知a、b为实数,若x2+ax+b≤0 有非空解集,则a2- 4b≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假。
由下列不等式:,,,,,你能得到一个怎样的一般不等式?并加以证明。
据调查统计,某市高二学生中男生的身高X(单位:cm)服从正态分布N(174,9),若该市共有高二男生3 000人,试计算该市高二男生身高在(174,180]范围内的人数.
在二项式的展开式中,前三项系数的绝对值成等差数列(1)求展开式的常数项; (2)求展开式中二项式系数最大的项;(3)求展开式中各项的系数和。
奖器有个小球,其中个小球上标有数字,个小球上标有数字,现摇出个小球,规定所得奖金(元)为这个小球上记号之和,求此次摇奖获得奖金数额的数学期望。