已知,抛物线的顶点为P(3,—2),且在x轴上截得的线段AB=4.(1)求抛物线的解析式.(2)若点Q在抛物线上,且ΔQAB的面积为12,求Q点的坐标.
先化简,再求值:,其中.
求不等式组的整数解.
(本题共3小题,第(1)小题4分,第(2)、(3)小题每小题5分,满分14分) 如图,在矩形ABCD中,点E在边AD上,联结BE,∠ABE = 30°,BE = DE,联结BD.点M为线段DE上的任意一点,过点M作MN // BD,与BE相交于点N. (1)如果,求边AD的长; (2)如图1,在(1)的条件下,如果点M为线段DE的中点,联结CN.过点M作MF⊥CN,垂足为点F,求线段MF的长; (3)试判断BE、MN、MD这三条线段的长度之间有怎样的数量关系?请证明你的结论.
(本题共3小题,第(1)小题4分,第(2)小题5分,第(3)小题3分,满分 12分) 如图,已知:抛物线与x轴相交于A、B两点,与y轴相交于点C,并且OA = OC. (1)求这条抛物线的解析式; (2)过点C作CE // x轴,交抛物线于点E,设抛物线的顶点为点D,试判断△CDE的形状,并说明理由; (3)设点M在抛物线的对称轴l上,且△MCD的面积等于△CDE的面积,请写出点M的坐标(无需写出解题步骤).
(本题共2小题,每小题6分,满分12分) 已知:如图,在直角梯形ABCD中,AD // BC,AB⊥AD,BC = CD,BE⊥CD,垂足为点E,点F在BD上,联结AF、EF. (1)求证:AD = ED; (2)如果AF // CD,求证:四边形ADEF是菱形.