(本小题满分7分)选修4—2:矩阵与变换已知矩阵M=有特征向量=,=,相应的特征值为λ1,λ2.(Ⅰ)求矩阵M的逆矩阵M-1及λ1,λ2;(Ⅱ)对任意向量=,求M100.
已知函数为常数)(1)若,求的单调区间;(2)当时,设的最大值为,最小值,若,求的值.
已知函数(Ⅰ)若试确定函数的单调区间;(Ⅱ)若,且对于任意,恒成立,求实数的取值范围;(Ⅲ)令若至少存在一个实数,使成立,求实数的取值范围.
已知是等差数列,其前项的和为,是等比数列,且,.(1)求数列和的通项公式;(2)记,,求数列的前项和.
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望; (Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由. 参考公式:. 参考数据:
在△ABC中,、、分别是角、、的对边,且.(Ⅰ)求角的大小;(Ⅱ)若,求△ABC的面积.