已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;(2)若棱锥E-DFC的体积为,求的值;(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.
(本小题9分). 如图所示,⊥平面,,,为中点. (1)证明:; (2)若与平面所成角的正切值为,求二面角--的正弦值.
(本小题8分). 已知圆: 和圆外一点(1, ), (1)若直线经过原点,且圆上恰有三个点到直线的距离为,求直线的方程; (2)若经过的直线与圆相切,切点分别为,求切线的方程及两切点所在的直线方程.
(本小题7分).如图,在四棱锥中,底面是正方形,侧棱,,是的中点,交于点. (1)证明//平面; (2)证明⊥平面; (3)求.
(本小题6分)已知直线l在两坐标轴上的截距相等,且点到直线的距离为,求直线的方程.
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为。 (1)求椭圆C的方程; (2)设直线L与椭圆C交于A、B两点,坐标原点O到L的距离的,求△AOB面积的最大值。