已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;(2)若棱锥E-DFC的体积为,求的值;(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:)获得身高数据的茎叶图如下: (1)根据茎叶图判断哪个班的平均身高较高。 (2)计算甲班的样本方差。 (3)现从甲乙两班同学中各随机抽取一名身高不低于的同学,求至少有一名身高大于的同学被抽中的概率。
已知数列的各项均为正数,为其前项和,对于任意的,满足关系式 (1)求数列的通项公式; (2)设数列的通项公式是,前项和为,求证:对于任意的正整数n,总有
已知函数. (1)求的值; (2)求函数在的最大值.
已知函数,,其中是的导函数. (1)对满足的一切的值,都有,求实数的取值范围; (2)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.
已知函数,数列满足。 (1)求; (2)猜想数列的通项公式,并用数学归纳法予以证明。