如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,M为AB中点,D为PB中点, 且△PMB为正三角形。(Ⅰ)求证:DM∥平面APC; (Ⅱ)若BC=4,AB=20,求三棱锥D—BCM的体积。
(本小题满分12分) 已知命题:方程在上有且仅有一解;命题:只有一个实数满足不等式若命题是假命题,求实数的取值范围.
(本小题满分12分)函数的定义域为集合A,关于x的不等式的解集为B,求使的实数的取值范围。
(本小题满分14分)已知曲线从C上一点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1)。设x1=1,an=xn+1-xn,bn=yn-yn+1 ①求Q1,Q2的坐标 ;②求数列{an}的通项公式;③记数列{an·bn}的前n项和为Sn,求证:
已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量,叫做把点B绕点A逆时针方向旋转角得到点P ①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标 ②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线C的方程.
(本小题满分14分)设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到这个椭圆上的点的最远距离是,求这个椭圆的方程。