【原创】如图,在三棱柱中,,底面为等边三角形,且,、、分别是,的中点.(1)求证:∥;(2)求证:;(3)求三棱锥的体积.
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2. (Ⅰ)若F为PC的中点,求证PC⊥平面AEF; (Ⅱ)求四棱锥P-ABCD的体积V.
在△ABC中,分别是角A,B,C的对边,,. (Ⅰ)求角的值; (Ⅱ)若,求△ABC面积.
某电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加游戏者单独面第一关、第二关、第三关成功的概率分别为,,,记该参加者闯三关所得总分为ζ. (1)求该参加者有资格闯第三关的概率; (2)求ζ的分布列和数学期望.
如图,在边长为的正方体中,、分别是、的中点,试用向量的方法:求证:平面;求与平面所成的角的余弦值.
已知直线在极坐标系中的方程为,圆C在极坐标系中的方程为,求圆C被直线截得的弦长.