(本题10分)如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.
已知:如图,在中 ,,,,求边的长.
如图,一次函数图象与轴相交于点,与反比例函数图象相交于点,的面积为6.求一次函数和反比例函数的解析式.
一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点处观测到河对岸水边有一点,测得在北偏西的方向上,沿河岸向北前行40米到达处,测得在北偏西的方向上,请你根据以上数据,求这条河的宽度.(参考数值:)
如图,在中,是边上一点,连结,,,,求的长.
如图,经过原点的抛物线与轴的另一个交点为A.过点作直线轴于点M,交抛物线于点B,过点B作直线BC∥轴与抛物线交于点C(B、C不重合),连结CP. (1)当时,求点A的坐标及BC的长; (2)当时,连结CA,问为何值时? (3)过点P作且,问是否存在,使得点E落在坐标轴上?若存在,求出所有满足要求的的值,并求出相对应的点E坐标;若不存在,请说明理由.