一只小狗从某地出发在一直线上来回跑,假定向右跑记为为正数,向左跑记为负数,记录小狗跑动的各段路程依次为(单位:米):+5,-3,+10,-8,-6,+12,-10.求:(1)小狗最后是否回到出发点?(2)在跑动过程中,如果每跑动1米奖励小狗2粒狗粮,则小狗一共得到多少粒狗粮?
如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB. (1)求点B的坐标; (2)求经过A、O、B三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由. (4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去. (1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式. (2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.
拱桥的形状是抛物线,其函数关系式为,当水面离桥顶的高度为m时,水面的宽度为多少米?
如图,△BCD,△ACE都是等边三角形,求证:BE="AD" 。
如图所示,在△ABC中,AB=AC,AE是∠BAC外角∠DAC的平分线,试判断AE与BC的位置关系;并解答你的结论。