如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字。现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y)。记S=x+y。(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:当S<6时甲获胜,否则乙获胜。你认为这个游戏公平吗?对谁有利?
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E. ⑴求证:点D是AB的中点; ⑵判断DE与⊙O的位置关系,并证明你的结论; ⑶若⊙O的直径为18,cosB =,求DE的长.
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE. ⑴说明四边形ACEF是平行四边形; ⑵当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集. ⑴求每件T恤和每本影集的价格分别为多少元? ⑵有几种购买T恤和影集的方案?
如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2). ⑴求直线y=ax+b的解析式; ⑵设直线y=ax+b与x轴交于点M,求AM的长.
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-l,-2和-3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b). ⑴用列表或画树状图的方法写出点Q的所有可能坐标; ⑵求点Q落在直线y=x-3上的概率.