甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.(1)分别求甲队以3:0,3:1,3:2获胜的概率;(2)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求甲队得分X的分布列及数学期望.
(本小题满分14分)已知函数,若函数在点处的切线与直线相互垂直. (1)求的值. (2)求函数的最大值. (3)证明:对于任意的,都有成立.
(本小题满分14分)如图所示,椭圆的左右焦点分别为,点为椭圆与坐标轴的交点,其中面积为,且椭圆的离心率为. (1)求椭圆的方程; (2)过椭圆的右焦点作两条相互垂直的弦,求由四点构成的四边形的面积的取值范围.
(本小题满分14分)设正数数列的前n项和为,. (1)求证:是等差数列; (2)设为数列{}的前n项和,求; (3)设,证明:
(本小题满分14分)如图所示,平面平面,且四边形为正方形,,∥,,为的中点. (1)求证:∥平面; (2)求证:平面; (3)求三棱锥的体积.
(本小题满分12分)广东某高中进行高中生歌唱比赛,在所有参赛成绩中随机抽取名学生的成绩,按成绩分组:第组,第组,第组,第组,第组得到的频率分布直方图如图所示.现在组委会决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试. (1)求组各应抽取多少人进入第二轮面试; (2)学校决定在(1)中抽取的这6名学生中随机抽取2名学生接受考官D的面试,求第四组中至少一人被考官D面试的概率.