甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.(1)分别求甲队以3:0,3:1,3:2获胜的概率;(2)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求甲队得分X的分布列及数学期望.
(本小题满分12分)有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
(本小题满分12分)设点P的坐标为,直线l的方程为.请写出点P到直线l的距离,并加以证明.
如图,FD垂直于矩形ABCD所在平面,CE//DF,.(Ⅰ)求证:BE//平面ADF;(Ⅱ)若矩形ABCD的一个边AB =,EF =,则另一边BC的长为何值时,二面角B-EF-D的大小为45°?
(本小题满分12分)三角形的三个内角A、B、C所对边的长分别为、、,设向量,若//.(I)求角B的大小;(II)求的取值范围.
..(本题14分)已知为常数,且,函数,(,为自然对数的底数)(Ⅰ)求实数的值;(Ⅱ)求函数的单调区间;(Ⅲ)当时,是否同时存在实数和(<),使得对每一个,直线与曲线()都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.