甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.(1)分别求甲队以3:0,3:1,3:2获胜的概率;(2)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求甲队得分X的分布列及数学期望.
已知|a|=,|b|=3,a与b夹角为45°,求使a+λb与λa+b的夹角为钝角时,λ的取值范围.
已知A(1,3)、B(-2,0)、C(2,1)为三角形的三个顶点,L、M、N分别是线段BC、CA、AB上的点,满足||||=||||=||||=13,求L、M、N三点的坐标.
已知O(0,0)、A(2,-1)、B(1,3)、=+t,求 (1)t为何值时,点P在x轴上?点P在y轴上?点P在第四象限? (2)四点O、A、B、P能否成为平行四边形的四个顶点,说明你的理由.
平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题: (1)求3a+b-2c; (2)求满足a=mb+nc的实数m,n; (3)若(a+kc)∥(2b-a),求实数k.
已知四点A(x,0)、B(2x,1)、C(2,x)、D(6,2x). (1)求实数x,使两向量、共线. (2)当两向量与共线时,A、B、C、D四点是否在同一条直线上?