如图,FD垂直于矩形ABCD所在平面,CE//DF,.(Ⅰ)求证:BE//平面ADF;(Ⅱ)若矩形ABCD的一个边AB =,EF =,则另一边BC的长为何值时,二面角B-EF-D的大小为45°?
某小组共有、、、、五位同学,他们的身高(单位:米)以及体重指 标(单位:千克/米2)如下表所示:
(1)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率; (2)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.
已知平面直角坐标系上的三点,,,为坐标原点,向量与向量共线. (1)求的值; (2)求的值.
设函数. (1)当时,求函数的最大值; (2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围; (3)当,,方程有唯一实数解,求正数的值.
设为数列的前项和,对任意的,都有(为正常数). (1)求证:数列是等比数列; (2)数列满足,,求数列的通项公式; (3)在满足(2)的条件下,求数列的前项和.
已知椭圆的中心在原点,离心率,右焦点为. (1)求椭圆的方程; (2)设椭圆的上顶点为,在椭圆上是否存在点,使得向量与共线?若存在,求直线 的方程;若不存在,简要说明理由.