如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.不要写理由.
)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD. (1)求证:∠DAC=∠DBA; (2)求证:P是线段AF的中点; (3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
如图,AB=BC,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC,垂足为E。 (1)求证:DE是⊙O的切线; (2)作DG⊥AB交⊙O于G点,垂足为F点,若∠A=30°,AB=8,求DG的长。
已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D(如图) (1)求证:AC=BD (2)若大圆的半径R=10,小圆半径r=8,且圆心O到直线AB的距离为6,求AC的长.
已知:x1、x2是一元二次方程的两个实数根,且x1、x2满足不等式,求实数m的取值范围。
如图:已知P是半径为5cm的⊙O内一点.解答下列问题: (1)用尺规作图找出圆心O的位置.(要求:保留所有的作图痕迹,不写作法) (2)用三角板分别画出过点P的最长弦AB和最短弦CD.