如图,二次函数的图象与x轴交与A(4,0),并且OA=OC=4OB,点P为过A、B、C三点的抛物线上一动点.(1)求点B、点C的坐标并求此抛物线的解析式;(2)是否存在点P,使得△ACP是以点C为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
某水果市场销售一种香蕉.甲店的香蕉价格为4元;乙店的香蕉价格为5元,若一次购买以上,超过部分的价格打7折.
(1)设购买香蕉,付款金额元,分别就两店的付款金额写出关于的函数解析式;
(2)到哪家店购买香蕉更省钱?请说明理由.
某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了50名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累计了40名参赛学生的成绩,余下10名参赛学生的成绩尚未累计,这10名学生成绩如下(单位:分),63,76,87,69,78,82,75,63,71.
频数分布表
组别
分数段
划记
频数
正
正正
正正正正
(1)在频数分布表中补全各组划记和频数;
(2)求扇形统计图中组所对应的圆心角的度数;
(3)该校有2000名学生参加此次知识竞赛,估计成绩在的学生有多少人?
(1)如图(1),已知与交于点,,.求证:.
(2)如图(2),已知的延长线与交于点,,.探究与的数量关系,并说明理由.
如图,在平面直角坐标系中,.
(1)将点向右平移3个单位长度,再向上平移1个单位长度,得到点,则点的坐标是 .
(2)点与点关于原点对称,则点的坐标是 .
(3)反比例函数的图象经过点,则它的解析式是 .
(4)一次函数的图象经过,两点,则它的解析式是 .
先化简,再计算:,其中.