(本小题满分14分)已知函数(为实数,,),(Ⅰ)若,且函数的值域为,求的表达式;(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围;(Ⅲ)设,,,且函数为偶函数,判断是否大于?
已知椭圆的左右焦点分别为,.在椭圆中有一内接三角形,其顶点的坐标,所在直线的斜率为.(Ⅰ)求椭圆的方程;(Ⅱ)当的面积最大时,求直线的方程.
已知函数,,且.(Ⅰ)若,求的值;(Ⅱ)当时,求函数的最大值;(Ⅲ)求函数的单调递增区间.
如图,在四棱锥中,底面是正方形,其他四个侧面都是等边三角形,与的交点为O. (Ⅰ)求证:平面;(Ⅱ)已知为侧棱上一个动点. 试问对于上任意一点,平面与平面是否垂直?若垂直,请加以证明;若不垂直,请说明理由.
(本题满分13分)某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
(Ⅰ)求此运动员射击的环数的平均数;(Ⅱ)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为(m,n).求“”的概率.
设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)当时,求函数的最大值及取得最大值时的的值.