如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE.(1)求证:四边形AECF是菱形.(2)若AB=2,BF=1,求四边形AECF的面积.
如图1, AB 是 ⊙ O 的直径, E 是 AB 延长线上一点, EC 切 ⊙ O 于点 C , OP ⊥ AO 交 AC 于点 P ,交 EC 的延长线于点 D .
(1)求证: ΔPCD 是等腰三角形;
(2) CG ⊥ AB 于 H 点,交 ⊙ O 于 G 点,过 B 点作 BF / / EC ,交 ⊙ O 于点 F ,交 CG 于 Q 点,连接 AF ,如图2,若 sin E = 3 5 , CQ = 5 ,求 AF 的值.
已知直线 l 1 : y = x + 3 与 x 轴交于点 A ,与 y 轴交于点 B ,且与双曲线 y = k x 交于点 C ( 1 , a ) .
(1)试确定双曲线的函数表达式;
(2)将 l 1 沿 y 轴翻折后,得到 l 2 ,画出 l 2 的图象,并求出 l 2 的函数表达式;
(3)在(2)的条件下,点 P 是线段 AC 上点(不包括端点),过点 P 作 x 轴的平行线,分别交 l 2 于点 M ,交双曲线于点 N ,求 S ΔAMN 的取值范围.
已知 Rt Δ ABC 中, ∠ B = 90 ° , AC = 20 , AB = 10 , P 是边 AC 上一点(不包括端点 A 、 C ) ,过点 P 作 PE ⊥ BC 于点 E ,过点 E 作 EF / / AC ,交 AB 于点 F .设 PC = x ,
PE = y .
(1)求 y 与 x 的函数关系式;
(2)是否存在点 P 使 ΔPEF 是 Rt △?若存在,求此时的 x 的值;若不存在,请说明理由.
我们规定:若 m ⃗ = ( a , b ) , n ⃗ = ( c , d ) ,则 m ⃗ · n ⃗ = ac + bd .如 m ⃗ = ( 1 , 2 ) , n ⃗ = ( 3 , 5 ) ,则 m ⃗ · n ⃗ = 1 × 3 + 2 × 5 = 13 .
(1)已知 m ⃗ = ( 2 , 4 ) , n ⃗ = ( 2 , − 3 ) ,求 m ⃗ · n ⃗ ;
(2)已知 m ⃗ = ( x − a , 1 ) , n ⃗ = ( x − a , x + 1 ) ,求 y = m ⃗ · n ⃗ ,问 y = m ⃗ · n ⃗ 的函数图象与一次函数 y = x − 1 的图象是否相交,请说明理由.
甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差 S 甲 2 = 7 12 ,平均成绩 x 甲 ̅ = 8 . 5 .
(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?
(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.
S 2 = 1 n [ ( x 1 − x ̅ ) 2 + ( x 2 − x ̅ ) 2 … ( x n − x ̅ ) 2 ] .