【原创】在今年的政府工作报告中,提到为加快健全基本医疗卫生制度.完善城乡居民基本医保,财政补助标准由每人每年320元提高到380元,经测算我市财政将比去年多支出19万元用于这项惠民工程,已知我市人口的自然增长率为千分之五,求我市去年的人口数以及去年的财政补助?
在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°. (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF; (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:; (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
定义:长宽比为:1(n为正基数)的矩形称为株为矩形.下面,我们通过折叠的方式折出一个矩形.如图①所示. 操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH 操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF 则四边形BCEF为矩形 证明:设正方形ABCD的边长为1,则BD==. 由折叠性质可知BG=BC=1,,则四边形BCEF为矩形 阅读以上内容,回答下列问题: 在图①中,所有与CH相等的线段是 ,tan的值是 已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图。 求证:四边形BCMN是矩形 将图②中的矩形BCMN沿用(2)中的操作3次后,得到一个“矩形”,则n的值是
在平面直角坐标系中,已知点A(-3,1),B(-2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.
已知实数a,b满足,,当时,函数()的最大值与最小值之差是1,求a的值.
国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表: 若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台. (1)商店至多可以购买冰箱多少台? (2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?