(1)如图所示,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果你能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,并写出其中的规律来?
为了了解某区初中学生上学的交通方式,从中随机调查了3000名学生的上学交通方式,统计结果如图所示. (1)补全以上两幅统计图并标注相应数值; (2)该区共有初中学生15000名,请估计其中骑自行上学的人数.
解方程:-=1.
(9分)如图(1),正方形ABCD中,点H从点C出发,沿CB运动到点B停止.连 结DH交正方形对角线AC于点E,过点E作DH的垂线交线段AB、CD于点F、G. (1)求证: DH=FG; (2)在图(1)中延长FG与BC交于点P,连结DF、DP(如图(2)),试探究DF与DP的关系,并说明理由.
(9分)某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售, 售出了300件;第二个月如果单价不变,预计仍可售出300件,批发商为增加销售量,决定 降价销售,根据市场调查,单价每降低1元,可多售出15件,但最低单价应高于购进的价 格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第 二个月单价降低x元. (1)填表(不需化简): (2)试写出批发商销售这批T恤的获得的总利润为y(元),试求出y与x之间的函数 关系式,并写出x的取值范围; (3)当第二个月的销售单价为多少元时,才使得销售这批T恤获得的利润最大?
.(9分)如图,AB为⊙O内垂直于直径的弦,AB、CD相于点H,△AED与△AHD 关于直线AD成轴对称. (1)试说明:AE为⊙O的切线; (2)延长AE与CD交于点P,已知PA=2,PD=1,求⊙O的半径和DE的长.