如图所示的几何体是由若干个相同的小正方体搭建而成的(第一层,1个;第二层3个;第3层,6个),小正方体的一个侧面的面积为1.今要用红颜色给这个几何体的表面着色(但底部不着色),要着色的面积是多少?
(本题5分)五子棋深受广大棋友的喜爱.规则是:10×10的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上首先连成五颗者为胜.如图是小张和小王的对弈图(小张执黑子先行,小王执白子后走).观察棋盘思考:若A点的位置记作(8,4),小张必须在哪个位置上落子才不会让小王在短时间内获胜?为什么?
(本题6分)如图,点O在直线AB上,OC平分∠DOB.若∠COB=36°. (1)求∠DOB的大小;(2)请你用量角器先画∠AOD的角平分线OE,再说明OE和OC的位置关系.
(本题共10分,每小题5分)(1)(2)
(本题共9分,其中第1小题4分,第2小题5分)(1)计算:.(2)设x、y为有理数,且x、y满足等式,求x+y的值.
甲、乙、丙三个班向希望工程捐赠图书.已知甲班1人捐6册,有2人各捐7册,其余人各捐11册;乙班有1人捐6册,3人各捐8册,其余人各捐10册;丙班有2人各捐4册,6人各捐7册,其余人各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册.各班捐书总数都在400册与550册之间.问:每班各有多少人?