在奥运五环图案内,分别填写五个数a,b,c,d,e,如其中a、b、c是三个连续偶数(a<b),d,e是两个连续奇数(d<e),且满足a+b+c=d+e,例如请你在0~20之间选择另一组符合条件的数填入在图:
庆华中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元. (1)购买一个足球、一个篮球各需多少元? (2)根据庆华中学的实际情况,需从该体育用品商店一次性购买足球和篮球共100个.要求购买足球和篮球的总费用不超过6000元,这所中学最多可以购买多少个篮球?
某中学组织全校4 000名学生进行了民族团结知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图6的频数分布表和频数分布直方图(不完整). 请根据以上提供的信息,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图; (3)上述学生成绩的中位数落在哪一组范围内? (4)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校4 000名学生中约有多少名获奖?
(1)如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF⊥AG于点F. 求证:AE=BF (2)如图,□ABCD中,的平分线交边于,的平分线交于,交于.若AB=3,BC=5,求EG的长。
(1)计算: (2)先化简,再求值:,其中为整数且.
已知:如图①,在中,,,,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为(),解答下列问题: (1)当为何值时,? (2)设的面积为(),求与之间的函数关系式; (3)如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时的值;若不存在,说明理由.