一质点运动的方程为s=8-3t2.(1)求质点在[1,1+△t]这段时间内的平均速度;(2)用定义法求质点在t=1时的瞬时速度.
在极坐标系中,圆C的方程为ρ=2sin,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线的参数方程为 (t为参数),判断直线和圆C的位置关系.
设椭圆C∶+=1(a>b>0)过点(0,4),离心率为.(1)求C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:PQ⊥平面DCQ;(2)求棱锥QABCD的体积与棱锥PDCQ的体积的比值.[来
已知等差数列{an}中,a1=1,a3=-3.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=-35,求k的值.