甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:甲 86 77 92 72 78 乙 78 82 88 82 95 (Ⅰ)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算); (Ⅱ)若从甲、乙两人的5次成绩中各随机抽取一个,求甲的成绩比乙高的概率.
已知某校在一次考试中,5名学生的数学和物理成绩如下表:
(Ⅰ)若在本次考试中,规定数学成绩在70以上(包括70分)且物理成绩在65分以上(包括65分)的为优秀. 计算这五名同学的优秀率; (Ⅱ)根据上表,利用最小二乘法,求出关于的线性回归方程,其中 (III)利用(Ⅱ)中的线性回归方程,试估计数学90分的同学的物理成绩. (四舍五入到整数)
设 (Ⅰ)求函数的定义域; (Ⅱ)若存在实数满足,试求实数的取值范围.
已知,,在处的切线方程为 (Ⅰ)求的单调区间与极值; (Ⅱ)求的解析式; (III)当时,恒成立,求的取值范围.
设等比数列{}的前项和为,已知对任意的,点,均在函数的图像上. (Ⅰ)求的值; (Ⅱ)记求数列的前项和.
如图,已知抛物线的焦点为,过焦点且不平行于轴的动直线交抛物线于,两点,抛物线在、两点处的切线交于点. (Ⅰ)求证:,,三点的横坐标成等差数列; (Ⅱ)设直线交该抛物线于,两点,求四边形面积的最小值.