如图1,在Rt△ABC中,∠C=90°,D,E分别是AC,AB上的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
如图,摩天轮的半径为50 m,点O距地面的高度为60 m,摩天轮做匀速转动,每3 min转一圈,摩天轮上点P的起始位置在最低点处.(1)试确定在时刻t(min)时点P距离地面的高度;(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85 m?
已知函数.(1)求的单调区间;(2)设,若对任意,均存在,使得<,求的取值范围.
已知过点的动直线与抛物线:相交于两点.当直线的斜率是时,.(1)求抛物线的方程;(2)设线段的中垂线在轴上的截距为,求的取值范围.
如图,在四棱锥中,底面是矩形,⊥平面,,,分别是的中点.(1)证明:⊥平面;(2)求平面与平面夹角的大小.
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值元的概率分布列.