(文科)已知椭圆的中心在坐标原点,两个顶点在直线x+2y﹣4=0上,F1是椭圆的左焦点.(1)求椭圆的标准方程;(2)设点P是椭圆上的一个动点,求线段PF1的中点M的轨迹方程;(3)若直线l:y=x+m与椭圆交于点A,B两点,求△ABO面积S的最大值及此时直线l的方程.
在平面直角坐标系中,点与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
已知抛物线:的焦点为,、是抛物线上异于坐标原点的不同两点,抛物线在点、处的切线分别为、,且,与相交于点. (1) 求点的纵坐标; (2) 证明:、、三点共线;
如图, 是边长为的正方形,平面,,,与平面所成角为. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。
已知命题:在上是增函数;命题函数存在极大值和极小值。求使命题“且”为真命题的的取值范围。
已知函数,其图象在点 处的切线方程为(1)求的值;(2)求函数的单调区间,并求出在区间[-2,4]上的最大值.