实践操作:如图,在中,∠ABC=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)(1)作∠BCA的角平分线,交AB于点O;(2)以O为圆心,OB为半径作圆.综合运用:在你所作的图中,(1)AC与⊙O的位置关系是 (直接写出答案)(2)若BC=6,AB=8,求⊙O的半径.
已知:如图,在Rt△ABC中,∠C=90°,AB=10,sinA=,求BC的长和∠B的正切值.
已知抛物线y1=a(x﹣1)2+4与直线y2=x+1的一个交点的横坐标是2.(1)求a的值;(2)请在所给的坐标系中,画出函数y1=a(x﹣1)2+4与y2=x+1的图象,并根据图象,直接写出y1≥y2时x的取值范围.
如图1,已知二次函数的图象与x轴交于A、B两点(B在A的左侧),顶点为C,点D(1,m)在此二次函数图象的对称轴上,过点D作y轴的垂线,交对称轴右侧的抛物线于E点.(1)求此二次函数的解析式和点C的坐标;(2)当点D的坐标为(1,1)时,连接BD、BE.求证:BE平分∠ABD;(3)点G在抛物线的对称轴上且位于第一象限,若以A、C、G为顶点的三角形与以G、D、E为顶点的三角形相似,求点E的横坐标.
已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形ABCD的边长为,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②请直接写出正方形CEFG的边长的值.
已知抛物线y=(m﹣1)x2﹣2mx+m+1(m>1).(1)求抛物线与x轴的交点坐标;(2)若抛物线与x轴的两个交点之间的距离为2,求m的值;(3)若一次函数y=kx﹣k的图象与抛物线始终只有一个公共点,求一次函数的解析式.