小明和妹妹都想去看科幻电影,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的个红球与个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去看电影,如果摸出的是白球,小明去看电影。(1)爸爸说这个办法不公平,请你用概率的知识解释原因。 (2)若爸爸从袋中取出个白球,再用小明提出的办法来确定谁去看电影,请问摸球的结果是对小明有利还是对妹妹有利,说明理由。
图1是某城市四月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2. 根据图中信息,解答下列问题: (1)将图2补充完整; (2)这8天的日最高气温的中位数是 ºC; (3)计算这8天的日最高气温的平均数.
某展览大厅有3个入口和2个出口,其示意图如下. 参观者从任意一个入口进入,参观结束后从任意一个出口离开. (1)用树状图表示,小明从进入到离开,对于入口和出口的选择有多少种不同的结果? (2)小明从入口1进入并从出口A离开的概率是多少?
解方程(1)x2+6=5x (2)9(x-1)2-(x+2)2="0" (3)+1=; (4)解不等式组:
(1)计算:-()-1- (2)先化简,再求值:。其中x=
已知正方形OABC中,O为坐标原点,点A在y轴的正半轴上,点C在x轴的正半轴上,点B(4,4).二次函数y=-x2+bx+c的图象经过点A、B.点P(t,0)是x轴上一动点,连接AP. (1)求此二次函数的解析式; (2)如图①,过点P作AP的垂线与线段BC交于点G,当点P在线段OC(点P不与点C、O重合)上运动至何处时,线段GC的长有最大值,求出这个最大值; (3)如图②,过点O作AP的垂线与直线BC交于点D,二次函数y=-x2+bx+c的图象上是否存在点Q,使得以P、C、Q、D为顶点的四边形是以PC为边的平行四边形?若存在,求出t的值;若不存在,请说明理由.