(1)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;(2)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
已知甲、乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷) 品种 第1年 第2年 第3年 第4年 第5年 甲 9.4 10.3 10.8 9.7 9.8 乙 9.8 9.9 10.1 10 10.2 经计算,甲乙的平均数均为10,试根据这组数据估计种水稻品种的产量较稳定.
已知是某个二元一次方程的一组解,则这个方程可以是.
如图,在平面直角坐标系中,直线y=﹣x+交直线y=kx(k>0)于点B,平行于y轴的直线x=7交它们于点A、C,且AC=15. (1)求∠OBC的度数; (2)若正方形的四个顶点恰好在射线AB、射线CB及线段AC上,请直接写出射线AB上的正方形顶点的坐标.(不需要写出计算过程).
如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF. (1)求∠EAF的度数; (2)如图2,连接FC交BD于M,交AD于N. ①求证:AD=AF+2DM; ②若AF=10,AN=12,则MD的长为 .
A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元. (1)设B市运往C村机器x台,求总运费W关于x的函数关系式; (2)若要求总运费不超过9000元,共有几种调运方案? (3)求出总运费最低的调运方案,最低运费是多少元? 分析由已知条件填出下表: