(1)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;(2)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
如图,已知AB是⊙O的直径,过点A作⊙O的切线MA,P为直线MA上一动点,以点P为圆心,PA为半径作⊙P,交⊙O于点C,连接PC、OP、BC.(1)知识探究(如图1):①判断直线PC与⊙O的位置关系,请证明你的结论;②判断直线OP与BC的位置关系,请证明你的结论.(2)知识运用(如图2):当PA>OA时,直线PC交AB的延长线于点D,若BD=2AB,求tan∠ABC的值.
阅读材料:用配方法求最值.已知,为非负实数,,,当且仅当“”时,等号成立.示例:当时,求的最小值.解:,当,即时,的最小值为6.(1)尝试:当时,求的最小值.(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,年的保养、维护费用总和为万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=)?最少年平均费用为多少万元?
如图,已知一次函数与反比例函数的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式的解集.
如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.
水利部确定每年的3月22日至28日为“中国水周”(1994年以前为7月1日至7日),从1991年起,我国还将每年5月的第二周作为城市节约用水宣传周.某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每月的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图表:请根据上面的统计图表,解答下列问题:(1)在频数分布表中:m= ,n= ;(2)根据题中数据补全频数直方图;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?