设函数.(Ⅰ)当,解不等式,;(Ⅱ)若的解集为,,求证:
(本小题满分8分) 如图,AB是⊙O的直径,C为圆上一点,AB=2,AC=1,P为⊙O所在平面外一点,且PA垂直于⊙O所在平面,PB与⊙O所在平面成角.求点A到平面PBC的距离.
(本小题满分8分) 已知圆的半径为,圆心在直线上,圆被直线截得的弦长为,求圆的方程.
(本小题满分8分) 如图,已知点是平行四边形所在平面外的一点,,分别是,上的点且,求证:平面.
(本小题满分8分) 将圆心角为1200,面积为3的扇形,作为圆锥的侧面,求圆锥的表面积和体积.
设,函数. (Ⅰ)证明:存在唯一实数,使; (Ⅱ)定义数列:,,. (i)求证:对任意正整数n都有; (ii) 当时,若, 证明:当k时,对任意都有: