(本小题满分12分)在平面直角坐标系中,点是圆上一动点,轴于点,记满足的动点的轨迹为.(Ⅰ)求轨迹的方程;(Ⅱ)是曲线与轴正半轴的交点, 曲线上是否存在两点,使得是以为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
设圆过点P(0,2), 且在轴上截得的弦RG的长为4. (1)求圆心的轨迹E的方程; (2)过点(0,1),作轨迹的两条互相垂直的弦、,设、的中点分别为、,试判断直线是否过定点?并说明理由.
如图,四棱锥S—ABCD的底面是边长为1的正方形, SD垂直于底面ABCD,SB=. (I)求证BCSC; (II)求面ASD与面BSC所成二面角的大小; (III)设棱SA的中点为M,求异面直线DM与SB所成角的大小.
已知函数图像上一点处的切线方程为,其中为常数. (Ⅰ)函数是否存在单调减区间?若存在,则求出单调减区间(用表示); (Ⅱ)若不是函数的极值点,求证:函数的图像关于点对称.
已知命题:方程有两个不等的负实根;:方程无实根.若“或”为真,“且”为假,求实数的取值范围.
如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由 B沿棱柱侧面经过棱C C1到点A1的最短路线长为,设这条最短路线与CC1的交 点为D. (1)求三棱柱ABC-A1B1C1的体积; (2)在平面A1BD内是否存在过点D的直线与平面ABC平行?证明你的判断; (3)证明:平面A1BD⊥平面A1ABB1.