(本小题满分12分)设,函数.(1)若函数的图象在处的切线与直线平行,求的值;(2)若,求函数的极值与单调区间;(3)若函数的图象与直线有三个公共点,求的取值范围.
(本小题满分14分)如图,在四棱锥P—ABCD中,PD 底面ABCD,底面ABCD是正方形,PD=DC,E、F分别为AB、PB的中点。(1)求证:EF CD;(2)求DB与平面DEF所成角的正弦值;(3)在平面PAD内求一点G,使GF 平面PCB,并证明你的结论。
(本小题满分13分)运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
(本小题满分13分)在△ABC中,a、b、c分别是角A、B、C的对边,且,(1)求角B的大小;(2)若最大边的边长为,且,求最小边长.
(本小题满分13分)已知,命题 “函数在上单调递减”,命题 “关于的不等式对一切的恒成立”,若为假命题,为真命题,求实数的取值范围.
. (本小题满分13分)已知数列的前项和为,且是与2的等差中项,⑴求的值;⑵求数列的通项公式。