抛物线与x轴分别交于点A (-1,0)和点B,与y轴的交点C坐标为(0,-3).(1)求抛物线的表达式;(2)点D为抛物线对称轴上的一个动点,若DA+DC的值最小,求点D的坐标.
对关于的一次函数和二次函数. (1) 当时, 求函数的最大值; (2) 若直线和抛物线有且只有一个公共点, 求的值.
在中, , 将绕点顺时针旋转角, 得, 交于点,分别交于两点.(1) 在旋转过程中, 线段与有怎样的数量关系? 证明你的结论;(2) 当时, 试判断四边形的形状, 并说明理由;(3) 在(2)的情况下, 求线段的长.
如图是一个锐角为的直角三角形, 是直角.用直尺和圆规在此三角形中作出一个半圆, 使它的圆心在线段上,且与都相切(保留作图痕迹,不必写出作法); 求(1)中所作半圆与三角形的面积比(保留一个有效数字).()
某一空间图形的三视图如右图所示, 其中主视图:半径为1的半圆以及高为1的矩形; 左视图:半径为1的圆以及高为1的矩形; 俯视图:半径为1的圆. 求此图形的体积.
某足球联赛记分规则为胜一场积3分, 平一场积1分, 负一场积0分. 当比赛进行到14轮结束时,甲队积分28分. 判断甲队胜, 平, 负各几场, 并说明理由.