抛物线与x轴分别交于点A (-1,0)和点B,与y轴的交点C坐标为(0,-3).(1)求抛物线的表达式;(2)点D为抛物线对称轴上的一个动点,若DA+DC的值最小,求点D的坐标.
如图,∠l+∠3=180°,∠2+∠D=90°,BE⊥FD,垂足为M,试证明:AB∥CD.
已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠DOE = 4:1.求∠AOF的度数.
判断下列两个命题是否为真命题,若是真命题,给予证明;若是假命题,请举出一个反例。(1)同旁内角相等,则两直线平行(2)邻补角的平分线互相垂直.
如图,EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整:因为EF∥AD,所以∠2= ( )又因为∠1=∠2,所以∠1=∠3所以AB∥ ( )所以∠BAC+ =180°( )因为∠BAC=70°,所以∠AGD= .
阅读理解:对于任意正实数a、b,∵≥0,∴≥0,∴≥,只有当a=b时,等号成立.结论:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值.(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。∵m>0,(定值),由以上结论可得:只有当m= 时,镜框周长有最小值是 ;(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.