抛物线与x轴分别交于点A (-1,0)和点B,与y轴的交点C坐标为(0,-3).(1)求抛物线的表达式;(2)点D为抛物线对称轴上的一个动点,若DA+DC的值最小,求点D的坐标.
如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的 速度 移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?
某温室大棚用花盆培育花苗,经过实验发现,每盆的盈利与每盆的株数构成一定的关系:每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加一株,平均单株盈利就减少0.5元。(1)如果每盆花苗(假设原来花盆中有3株花苗)增加a株,则每盆花苗有 株,平均单株盈利为 元;(2)要使每盆的盈利达到10元,每盆应该植入多少株?
如图所示,⊙O 的半径是4,PA、PB分别与⊙O相切于点A、点B,若PA与PB之间的夹角∠APB=60°, (1)若点C是圆上的一点,试求∠ACB的大小;(2)求△ABP的周长
如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足分别为E、F;连结AE、CF,得四边形AFCE,试判断四边形AFCE是下列图形中的哪一种?①平行四边形;②菱形;③矩形;请证明你的结论.
(本小题满分10分)如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2-6x+8=0的两个根(OA<OB),点C在y轴上,且OA︰AC=1:2,D(3,0)直线CD垂直于直线AB于点P,交x轴于点D。(1)求出点A、点B的坐标。(2)请求出直线CD的解析式。(3)若点M为坐标平面内任意一点,在直线AB上是否存在这样的点M,使以点B、D、M为顶点的三角形与△AOB相似,若存在,请直接写出点M的坐标;若不存在,请说明理由。