选修4-4:坐标系与参数方程已知曲线C的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(Ⅰ)求曲线C的直角坐标方程与直线l的普通方程;(Ⅱ)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.
已知函数. (Ⅰ)若方程在上有解,求的取值范围; (Ⅱ)在中,分别是A,B,C所对的边,若,且,,求的最小值.
在极坐标系中,直线的极坐标方程为是上任意一点,点P在射线OM上,且满足,记点P的轨迹为。 (Ⅰ)求曲线的极坐标方程; (Ⅱ)求曲线上的点到直线距离的最大值。
如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且。求证: (Ⅰ)D、E、C、F四点共圆;(Ⅱ)
已知在处取得极值。 (Ⅰ)证明:; (Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。
四边形ABCD的四个顶点都在抛物线上,A,C关于轴对称,BD平行于抛物线在点C处的切线。 (Ⅰ)证明:AC平分; (Ⅱ)若点A坐标为,四边形ABCD的面积为4,求直线BD的方程。