(本小题满分14分)已知数列的前项和为,且满足, , N.(1)求的值;(2)求数列的通项公式;(3)是否存在正整数,使,, 成等比数列? 若存在,求的值; 若不存在,请说明理由.
(本题12分) 已知中,角,所对的边分别是,且. (1)求的值; (2)若,求面积的最大值.
(本题12分)如图,是圆柱的轴截面,是底面圆周上异于,的一点,.(1)求证:平面⊥平面.(2)求几何体的体积的最大值.
(本题10分)按规定:车辆驾驶员血液酒精浓度在(不含)之间,属酒后驾车;在(含)以上时,属醉酒驾车.某市交警在某路段的一次拦查行动中,依法检查了辆机动车,查出酒后驾车和醉酒驾车的驾驶员人,右图是对这人血液中酒精含量进行检查所得结果的频率分布直方图.(1)根据频率分布直方图,求:此次抽查的人中,醉酒驾车的人数;(2)从血液酒精浓度在范围内的驾驶员中任取人,求恰有人属于醉酒驾车的概率.
已知函数(1)若a=1,求函数f(x)的零点;(2)若函数f(x)在[-1,+∞)上为增函数,求a的取值范围.
某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按2log5(A+1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记资金总额为y(单位:万元),销售利润为x(单位:万元).(1)写出该公司激励销售人员的奖励方案的函数表达式;(2)如果业务员老张获得5.5万元的资金,那么他的销售利润是多少万元?