(本小题满分12分)点P为抛物线y=x2-2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A,B两点(点A在点B的上方),点Q为点P旋转后的对应点.(1)当m=2,点P横坐标为4时,求Q点的坐标;(2)设点Q(a,b),用含m,b的代数式表示a;(直接写出结果)(3)如图,点Q在第一象限内,点D在并轴的正半轴上,点C为OD的中点,QD平分∠AQC,AQ=2QC,当QD=m时,求m的值.
如图,点O在ÐAPB的平分在线,圆O与PA相切于点C; (1) 求证:直线PB与圆O相切; (2) PO的延长线与圆O交于点E。若圆O的半径为3,PC=4。 求弦CE的长。
某商场将进价为30元的洗发水先标价40元出售,为了搞促销活动经过两次降价调至每件32.4元。 (1)若这两次降价的降价率相同,求这个降价率; (2)经过调查,该洗发水每降价0.2元,每月可多销售10件,若该洗发水原来每月可销售200件,那么销售价定为多少元,可以使商场在销售该洗发水中获得最大的利润?并求这个最大值。
小明为研究反比例函数的图象,在-2、-1、1中任意取一个数为横坐标,在-2、-1、2中任意取一个数为纵坐标组成点P的坐标。 (1)求出点P坐标所有可能结果的个数。(用列表或画树状图求解) (2)求点P在反比例函数的图象上的概率。
如图,在矩形OABC中,点B的坐标为(-2,3)。画出矩形OABC绕点O顺时针旋转90°后的矩形OA1B1C1,并直接写出的坐标A1、B1、C1的坐标。
计算:(每小题8分,共16分) (1)化简:(2)解方程