如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.
(本题10分)将长为2.5米的梯子AC斜靠在墙上,梯子的底部离墙的底端1.5米(即图中BC的长).(1)求梯子的顶端与地面的距离;(2)若梯子顶端A下滑1.3米,那么梯子底端C向左移动了多少米?
(本题10分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.
(本题10分)如图,在平面直角坐标系xOy中,点A(−2,10),点B(6,10).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:①点P到A,B两点的距离相等;②点P到两坐标轴的距离相等.(要求保留作图痕迹,不必写出作法)(2)求出(1)中点P的坐标.
(本题10分)已知:等腰三角形的周长为80.(1)写出底边长y与腰长x的函数表达式;(2)当腰长为30时,底边长为多少?(3)当底边长为8时,腰长为多少?
(本题8分)求下列各式中的x: (1);(2).